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HYDROSTATIC BEARINGS

10 – 100 µm

Applications:

• Machining centres

• High-precision machines

• Turntables

• Industrial guideways

• Antennas & telescopes

• Potential use in high-demand areas 

(energetics, logistics, production,...)
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LARGE-SCALE HYDROSTATIC BEARINGS
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720 l/min150 l/min10 l/min flow rate

www.giantmagellan.org
https://elt.eso.org/

Manufacturing

Transport

Assembly

CHALLENGES



LARGE-SCALE HYDROSTATIC BEARINGS
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Challenges:

• High initial and energetic demands (ELT est. 100 000 € / year)

• High maintenance costs (HSB repair 1.15 milion €, NASA 2010)

• Limited market availability

• High potential for megaprojects
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LARGE-SCALE HYDROSTATIC BEARINGS

+ low friction, no wear

+ zero speed operation

+ precise & smooth movement

+ damping

- high cost

- continuous supply

- energy consumption

- misalignment sensitivity

10 – 100 µm

ADVANTAGES DISADVANTAGES

Pad geometry

Film thicknessLoad capacity

Supplied flow
Dynamic viscosity
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Analytical approach Experimental approach Numerical approach

▪ Based on N-S equation

▪ Simplifications – Reynolds 

▪ Only for simple geometry

▪ Recommended H/h (20-50x)

▪ Methodology on HSL design 
(Bassani & Piccigallo 1992)

▪ Real behaviour of the bearing

▪ Validation of derived equations

▪ Demanding for time and cost

▪ Electric field analogy (Loeb, 1957)

▪ Modelling of any geometry

▪ Time and cost efficient

▪ Reduction of development costs

▪ Model verification (Horvat, 2011)

SHEN et al. (2014)LOEB and RIPPEL (1958)

PAD GEOMETRY OPTIMIZATION

Circular and rectangular pad geometry

recess

land
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Van Beek et al. (1996)

• Numerical model

• More uniform pressure distribution

Liang et al. (2019) 

• Numerical & experimental model

• HD pad compliant support

ALIGNMENT & MOVEMENT PRECISION

Rehman et al. (2019) 

• Experimentally verified

• Higher precision than PID 

controller

• Challenging manufacturing, trasportation & assembly

• Film thickness in range 20-100 µm

• Pad misalignment might lead to surface damage & seizure

SELF-ALIGNING FEEDBACK CONTROL
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HYDROSTATIC BEARING LUBRICATION SYSTEM
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PRESSURIZED OIL SUPPLY

• Continuous supply of pressurized lubricant

• Flow control & adjustment (Rehman 2021)

• Research mainly focused on restrictors (Childs 2019)

RESTRICTORS

• Necessary in multi-pad single-pump HSB systems

(Khonsari 2017)

• Most common types (Bassani & Piccigallo 1992):

a) Fixed: Orifice, capillary

b) Variable – passive: compliant elements, control valves

c) Variable – active: EM valves



SUMMARY OF LITERATURE REVIEW

15/42

Pad geometry optimization

✓Optimization methods

✓Multi-criteria optimization

x Multi-parametric shape optimization

Alignment & movement precision

✓ Surface topography influence

x Compliant support experiments

x Assembly error tolerancing

Supply system

✓ Flow control devices

✓ Feedback systems

x Energy consumption reductionJohns et al. 2014



AIM OF THE THESIS
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Introduce performance and safety improvements to the large-scale hydrostatic 
bearing design methodology. 

SCIENTIFIC QUESTIONS:

1. What is the influence of hydrostatic bearing recess position and size on the bearing performance? 

2. How is the hydrostatic lubricating film affected by assembly errors of the bearing bodies?



SCIENTIFIC QUESTIONS
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1. What is the influence of hydrostatic bearing recess position and size on the bearing performance? 

Recess size and layout optimization are usually done according to one parameter classical approach, in which the

geometric parameters are linked together. Separating the two parameters, size and layout, can lead to improved pad

performance and lower energetic losses.

HYPOTHESIS 1 (SQ 1):

PAD GEOMETRY CLASSIAL MULTI-PARAMETRIC



SCIENTIFIC QUESTIONS
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2. How is the hydrostatic lubricating film affected by assembly errors of the bearing bodies?

Pad misalignment can significantly affect the generation and uniformity of the HS lubricating film. The lubricating film is

able to compensate certain magnitude of pad misalignment. The bearing performance during eccentric loading can be

improved using a compliant member. But the compliant support is also able to compensate larger misalignment compared

to rigid support.

HYPOTHESIS 2 (SQ 2):



SCIENTIFIC QUESTIONS
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2. How is the hydrostatic lubricating film affected by assembly errors of the bearing bodies?

Assembly errors of segmented sliders were not studied, even though HS bearings have a great potential in large-scale

applications. Assembly errors of a segmented slider can lead to HS lubricating film non-uniformity and disruption. The

maximal allowed error of the segmented sliders must be smaller than the film thickness to secure safe operation of the

bearing.

HYPOTHESIS 3 (SQ 2):



MATERIALS & METHODS
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SOLUTION METHODOLOGY
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PAD 
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OFFSET
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- LOW-SPEED
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(38 mm/s)
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- STATIC

BEARING EFFICIENCY

BEARING SAFETY



EXPERIMENTAL DEVICE – 2PAD
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SECTION VIEW

Pad A Pad B

Loading frame

Linear motion motor

Slider

THE BEARING HYDRAULIC CIRCUIT

• max. flow supply 20 l/min

• max. pressure 100 bar
• in-gap oil temperature measurement

• four-recess configuration

• max. load 40 kN

• distance sensors 0 – 4 mm (0.01 mm res.)
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• in-gap oil temperature measurement

• four-recess configuration

• max. load 40 kN

• distance sensors 0 – 4 mm (0.01 mm res.)

• max. flow supply 20 l/min

• max. pressure 100 bar



SOLUTION METHODOLOGY
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PAD GEOMETRY OPTIMIZATION
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Comparison of results for initial pad geometry.

Pad geometry variations of recess size and position.

• Static conditions

• Total load: 16 kN

• Total supplied flow: 8.5 l/min



PAD GEOMETRY OPTIMIZATION
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Interpolated power loss factor data with optimal recess size and position using 

novel and classical approaches.



Interpolated power loss factor data with optimal recess size and position using 

novel and classical approaches.

PAD GEOMETRY OPTIMIZATION
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PROS:

+ 20 % lower power loss

+ Uniform pressure distribution

+ Usable for any shape

+ Suitable for any software

CONS:

- Connected recesses

- Require decent hardware



SOLUTION METHODOLOGY
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PAD MISALIGNMENT – SUPPORT STIFFNESS
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COMPLIANT SUPPORT STIFFNESS

• Slider adjustment to the misalignment

• Relative change in film thickness

• Film stiffness: 17 kN/mm

soft: 850 N/mm

medium: 1750 N/mm

hard: 3200 N/mm

rigid



PAD MISALIGNMENT - ASSESSMENT
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▪ Self-aligning

▪ 4-6x better performance

▪ Not suitable for high-precision apps

COMPLIANT SUPPORT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT

RIGID

COMPLIANT



SOLUTION METHODOLOGY
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SLIDER MISALIGNMENT - STATIC

▪ Limit error 0.46 °

▪ Dependent on pad distance

OFFSET TILT

▪ Critical e/h = 2.75

▪ Dependent on connection position
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SLIDER MISALIGNMENT - DYNAMIC

▪ Critical e/h = 1.5

▪ Gradual loss of load-carrying ability

STEP-UP
▪ Critical e/h = 1

▪ High risk of collision

STEP-DOWN

h = 0,14 mm
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SLIDER MISALIGNMENT - DYNAMIC

▪ Critical e/h = 1.5

▪ Gradual loss of load-carrying ability

STEP-UP
▪ Critical e/h = 1

▪ High risk of collision

STEP-DOWN

(e/h = 2.15) (e/h = 2.15)

h = 0,14 mm



CONCLUSIONS - HYPOTHESES
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Q1: „What is the influence of hydrostatic bearing recess position and size on the bearing performance?“

„HSB pad geometry is one of the key parameters influencing its performance. The proposed two

parameter method shows that by adjusting recess size and position separately can reduce energy

losses up to 20 %, compared to the classical approach.“

H1 (Q1): „Recess size and layout optimization are usually done according to 

one parameter classical approach, in which the geometric parameters are 

linked together. Separating the two parameters, size and layout, can lead to 

improved pad performance and lower energetic losses.“
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„Compared to a rigid support, compliant pad support for multi-pad HSB allows 4 to 6

times larger misalignment depending on the misalignment type.“

CONCLUSIONS - HYPOTHESES

Q2: „How is the hydrostatic lubricating film affected by assembly errors of the bearing bodies?“

H2 (Q2): Pad misalignment can significantly affect the generation and uniformity of the HS 

lubricating film. The lubricating film is able to compensate certain magnitude of pad 

misalignment. The bearing performance during eccentric loading can be improved using a 

compliant member. But the compliant support is also able to compensate larger 

misalignment compared to rigid support.



37/42

The maximal allowed error of slider segmented bodies to avoid collision must be smaller than

the film thickness.

CONCLUSIONS - HYPOTHESES

Q2: „How is the hydrostatic lubricating film affected by assembly errors of the bearing bodies?“

H3 (Q2): Assembly errors were not studied, even though HS bearings have a great potential 

in large-scale applications. Assembly errors of a segmented slider can lead to HS lubricating 

film non-uniformity and disruption. The maximal allowed error of the segmented sliders must 

be smaller than the film thickness to secure safe operation of the bearing.
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AIS: 0.789 (Q2)

IF: 3.6 (Q2)

AIS: 0.665 (Q2)

IF: 3.2 (Q1)

AIS: 1.02 (Q2)

IF: 2.60 (Q2)
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BEARING SAFETY
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PRACTICAL APPLICATIONS OF RESULTS
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Potential improvement of large-scale HSL bearings: 

- Reduced power consumption by 20 % → 20 000 € (at est. ELT operation 100 000 € / year)

- Simplified design and assembly process – limits of pad & segmented slider assembly errors

- Improved safety (HS bearing repair cost 1.15 million €, made by NASA  in 2010)
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